API Summary¶
Summary of public functions and classes exposed in ONNX Runtime.
OrtValue¶
ONNX Runtime works with native Python data structures which are mapped into ONNX data formats : Numpy arrays (tensors), dictionaries (maps), and a list of Numpy arrays (sequences). The data backing these are on CPU.
ONNX Runtime supports a custom data structure that supports all ONNX data formats that allows users to place the data backing these on a device, for example, on a CUDA supported device. This allows for interesting IOBinding scenarios (discussed below). In addition, ONNX Runtime supports directly working with OrtValue (s) while inferencing a model if provided as part of the input feed.
Below is an example showing creation of an OrtValue from a Numpy array while placing its backing memory on a CUDA device:
#X is numpy array on cpu, create an OrtValue and place it on cuda device id = 0
ortvalue = onnxruntime.OrtValue.ortvalue_from_numpy(X, 'cuda', 0)
ortvalue.device_name() # 'cuda'
ortvalue.shape() # shape of the numpy array X
ortvalue.data_type() # 'tensor(float)'
ortvalue.is_tensor() # 'True'
np.array_equal(ortvalue.numpy(), X) # 'True'
#ortvalue can be provided as part of the input feed to a model
ses = onnxruntime.InferenceSession('model.onnx')
res = sess.run(["Y"], {"X": ortvalue})
IOBinding¶
By default, ONNX Runtime always places input(s) and output(s) on CPU, which is not optimal if the input or output is consumed and produced on a device other than CPU because it introduces data copy between CPU and the device. ONNX Runtime provides a feature, IO Binding, which addresses this issue by enabling users to specify which device to place input(s) and output(s) on. Here are scenarios to use this feature.
(In the following code snippets, model.onnx is the model to execute, X is the input data to feed, and Y is the output data.)
Scenario 1:
A graph is executed on a device other than CPU, for instance CUDA. Users can use IOBinding to put input on CUDA as the follows.
#X is numpy array on cpu
session = onnxruntime.InferenceSession('model.onnx')
io_binding = session.io_binding()
# OnnxRuntime will copy the data over to the CUDA device if 'input' is consumed by nodes on the CUDA device
io_binding.bind_cpu_input('input', X)
io_binding.bind_output('output')
session.run_with_iobinding(io_binding)
Y = io_binding.copy_outputs_to_cpu()[0]
Scenario 2:
The input data is on a device, users directly use the input. The output data is on CPU.
#X is numpy array on cpu
X_ortvalue = onnxruntime.OrtValue.ortvalue_from_numpy(X, 'cuda', 0)
session = onnxruntime.InferenceSession('model.onnx')
io_binding = session.io_binding()
io_binding.bind_input(name='input', device_type=X_ortvalue.device_name(), device_id=0, element_type=np.float32, shape=X_ortvalue.shape(), buffer_ptr=X_ortvalue.data_ptr())
io_binding.bind_output('output')
session.run_with_iobinding(io_binding)
Y = io_binding.copy_outputs_to_cpu()[0]
Scenario 3:
The input data and output data are both on a device, users directly use the input and also place output on the device.
#X is numpy array on cpu
X_ortvalue = onnxruntime.OrtValue.ortvalue_from_numpy(X, 'cuda', 0)
Y_ortvalue = onnxruntime.OrtValue.ortvalue_from_shape_and_type([3, 2], np.float32, 'cuda', 0) # Change the shape to the actual shape of the output being bound
session = onnxruntime.InferenceSession('model.onnx')
io_binding = session.io_binding()
io_binding.bind_input(name='input', device_type=X_ortvalue.device_name(), device_id=0, element_type=np.float32, shape=X_ortvalue.shape(), buffer_ptr=X_ortvalue.data_ptr())
io_binding.bind_output(name='output', device_type=Y_ortvalue.device_name(), device_id=0, element_type=np.float32, shape=Y_ortvalue.shape(), buffer_ptr=Y_ortvalue.data_ptr())
session.run_with_iobinding(io_binding)
Scenario 4:
Users can request ONNX Runtime to allocate an output on a device. This is particularly useful for dynamic shaped outputs. Users can use the get_outputs() API to get access to the OrtValue (s) corresponding to the allocated output(s). Users can thus consume the ONNX Runtime allocated memory for the output as an OrtValue.
#X is numpy array on cpu
X_ortvalue = onnxruntime.OrtValue.ortvalue_from_numpy(X, 'cuda', 0)
session = onnxruntime.InferenceSession('model.onnx')
io_binding = session.io_binding()
io_binding.bind_input(name='input', device_type=X_ortvalue.device_name(), device_id=0, element_type=np.float32, shape=X_ortvalue.shape(), buffer_ptr=X_ortvalue.data_ptr())
#Request ONNX Runtime to bind and allocate memory on CUDA for 'output'
io_binding.bind_output('output', 'cuda')
session.run_with_iobinding(io_binding)
# The following call returns an OrtValue which has data allocated by ONNX Runtime on CUDA
ort_output = io_binding.get_outputs()[0]
Scenario 5:
Users can bind OrtValue (s) directly.
#X is numpy array on cpu
#X is numpy array on cpu
X_ortvalue = onnxruntime.OrtValue.ortvalue_from_numpy(X, 'cuda', 0)
Y_ortvalue = onnxruntime.OrtValue.ortvalue_from_shape_and_type([3, 2], np.float32, 'cuda', 0) # Change the shape to the actual shape of the output being bound
session = onnxruntime.InferenceSession('model.onnx')
io_binding = session.io_binding()
io_binding.bind_ortvalue_input('input', X_ortvalue)
io_binding.bind_ortvalue_output('output', Y_ortvalue)
session.run_with_iobinding(io_binding)
Device¶
The package is compiled for a specific device, GPU or CPU. The CPU implementation includes optimizations such as MKL (Math Kernel Libary). The following function indicates the chosen option:
Examples and datasets¶
The package contains a few models stored in ONNX format used in the documentation. These don’t need to be downloaded as they are installed with the package.
Load and run a model¶
ONNX Runtime reads a model saved in ONNX format. The main class InferenceSession wraps these functionalities in a single place.
-
class
onnxruntime.
ModelMetadata
¶ Pre-defined and custom metadata about the model. It is usually used to identify the model used to run the prediction and facilitate the comparison.
-
property
custom_metadata_map
¶ additional metadata
-
property
description
¶ description of the model
-
property
domain
¶ ONNX domain
-
property
graph_description
¶ description of the graph hosted in the model
-
property
graph_name
¶ graph name
-
property
producer_name
¶ producer name
-
property
version
¶ version of the model
-
property
-
class
onnxruntime.
InferenceSession
(path_or_bytes, sess_options=None, providers=None, provider_options=None)[source]¶ This is the main class used to run a model. The next release (ORT 1.10) will require explicitly setting the providers parameter if you want to use execution providers other than the default CPU provider (as opposed to the current behavior of providers getting set/registered by default based on the build flags) when instantiating InferenceSession.
-
class
onnxruntime.
NodeArg
¶ Node argument definition, for both input and output, including arg name, arg type (contains both type and shape).
-
property
name
¶ node name
-
property
shape
¶ node shape (assuming the node holds a tensor)
-
property
type
¶ node type
-
property
-
class
onnxruntime.
RunOptions
¶ Configuration information for a single Run.
-
property
log_severity_level
¶ Log severity level for a particular Run() invocation. 0:Verbose, 1:Info, 2:Warning. 3:Error, 4:Fatal. Default is 2.
-
property
log_verbosity_level
¶ VLOG level if DEBUG build and run_log_severity_level is 0. Applies to a particular Run() invocation. Default is 0.
-
property
logid
¶ To identify logs generated by a particular Run() invocation.
-
property
only_execute_path_to_fetches
¶ Only execute the nodes needed by fetch list
-
property
terminate
¶ Set to True to terminate any currently executing calls that are using this RunOptions instance. The individual calls will exit gracefully and return an error status.
-
property
-
class
onnxruntime.
SessionOptions
¶ Configuration information for a session.
-
add_free_dimension_override_by_denotation
(self: onnxruntime.capi.onnxruntime_pybind11_state.SessionOptions, arg0: str, arg1: int) → None¶ Specify the dimension size for each denotation associated with an input’s free dimension.
-
add_free_dimension_override_by_name
(self: onnxruntime.capi.onnxruntime_pybind11_state.SessionOptions, arg0: str, arg1: int) → None¶ Specify values of named dimensions within model inputs.
-
add_initializer
(self: onnxruntime.capi.onnxruntime_pybind11_state.SessionOptions, arg0: str, arg1: object) → None¶
-
add_session_config_entry
(self: onnxruntime.capi.onnxruntime_pybind11_state.SessionOptions, arg0: str, arg1: str) → None¶ Set a single session configuration entry as a pair of strings.
-
property
enable_cpu_mem_arena
¶ Enables the memory arena on CPU. Arena may pre-allocate memory for future usage. Set this option to false if you don’t want it. Default is True.
-
property
enable_mem_pattern
¶ Enable the memory pattern optimization. Default is true.
-
property
enable_profiling
¶ Enable profiling for this session. Default is false.
-
property
execution_mode
¶ Sets the execution mode. Default is sequential.
-
property
execution_order
¶ Sets the execution order. Default is basic topological order.
-
get_session_config_entry
(self: onnxruntime.capi.onnxruntime_pybind11_state.SessionOptions, arg0: str) → str¶ Get a single session configuration value using the given configuration key.
-
property
graph_optimization_level
¶ Graph optimization level for this session.
-
property
inter_op_num_threads
¶ Sets the number of threads used to parallelize the execution of the graph (across nodes). Default is 0 to let onnxruntime choose.
-
property
intra_op_num_threads
¶ Sets the number of threads used to parallelize the execution within nodes. Default is 0 to let onnxruntime choose.
-
property
log_severity_level
¶ Log severity level. Applies to session load, initialization, etc. 0:Verbose, 1:Info, 2:Warning. 3:Error, 4:Fatal. Default is 2.
-
property
log_verbosity_level
¶ VLOG level if DEBUG build and session_log_severity_level is 0. Applies to session load, initialization, etc. Default is 0.
-
property
logid
¶ Logger id to use for session output.
-
property
optimized_model_filepath
¶ File path to serialize optimized model to. Optimized model is not serialized unless optimized_model_filepath is set. Serialized model format will default to ONNX unless:
add_session_config_entry is used to set ‘session.save_model_format’ to ‘ORT’, or
there is no ‘session.save_model_format’ config entry and optimized_model_filepath ends in ‘.ort’ (case insensitive)
-
property
profile_file_prefix
¶ The prefix of the profile file. The current time will be appended to the file name.
-
register_custom_ops_library
(self: onnxruntime.capi.onnxruntime_pybind11_state.SessionOptions, arg0: str) → None¶ Specify the path to the shared library containing the custom op kernels required to run a model.
-
property
use_deterministic_compute
¶ Whether to use deterministic compute. Default is false.
-
Backend¶
In addition to the regular API which is optimized for performance and usability, ONNX Runtime also implements the ONNX backend API for verification of ONNX specification conformance. The following functions are supported:
-
onnxruntime.backend.
is_compatible
(model, device=None, **kwargs)¶ Return whether the model is compatible with the backend.
- Parameters
model – unused
device – None to use the default device or a string (ex: ‘CPU’)
- Returns
boolean
-
onnxruntime.backend.
prepare
(model, device=None, **kwargs)¶ Load the model and creates a
onnxruntime.InferenceSession
ready to be used as a backend.- Parameters
model – ModelProto (returned by onnx.load), string for a filename or bytes for a serialized model
device – requested device for the computation, None means the default one which depends on the compilation settings
kwargs – see
onnxruntime.SessionOptions
- Returns
-
onnxruntime.backend.
run
(model, inputs, device=None, **kwargs)¶ Compute the prediction.
- Parameters
model –
onnxruntime.InferenceSession
returned by function prepareinputs – inputs
device – requested device for the computation, None means the default one which depends on the compilation settings
kwargs – see
onnxruntime.RunOptions
- Returns
predictions
-
onnxruntime.backend.
supports_device
(device)¶ Check whether the backend is compiled with particular device support. In particular it’s used in the testing suite.