.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plot_load_and_predict.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_load_and_predict.py: .. _l-example-simple-usage: Load and predict with ONNX Runtime and a very simple model ========================================================== This example demonstrates how to load a model and compute the output for an input vector. It also shows how to retrieve the definition of its inputs and outputs. .. GENERATED FROM PYTHON SOURCE LINES 14-19 .. code-block:: default import onnxruntime as rt import numpy from onnxruntime.datasets import get_example .. GENERATED FROM PYTHON SOURCE LINES 20-22 Let's load a very simple model. The model is available on github `onnx...test_sigmoid `_. .. GENERATED FROM PYTHON SOURCE LINES 22-26 .. code-block:: default example1 = get_example("sigmoid.onnx") sess = rt.InferenceSession(example1) .. GENERATED FROM PYTHON SOURCE LINES 27-28 Let's see the input name and shape. .. GENERATED FROM PYTHON SOURCE LINES 28-36 .. code-block:: default input_name = sess.get_inputs()[0].name print("input name", input_name) input_shape = sess.get_inputs()[0].shape print("input shape", input_shape) input_type = sess.get_inputs()[0].type print("input type", input_type) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none input name x input shape [3, 4, 5] input type tensor(float) .. GENERATED FROM PYTHON SOURCE LINES 37-38 Let's see the output name and shape. .. GENERATED FROM PYTHON SOURCE LINES 38-46 .. code-block:: default output_name = sess.get_outputs()[0].name print("output name", output_name) output_shape = sess.get_outputs()[0].shape print("output shape", output_shape) output_type = sess.get_outputs()[0].type print("output type", output_type) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none output name y output shape [3, 4, 5] output type tensor(float) .. GENERATED FROM PYTHON SOURCE LINES 47-48 Let's compute its outputs (or predictions if it is a machine learned model). .. GENERATED FROM PYTHON SOURCE LINES 48-54 .. code-block:: default import numpy.random x = numpy.random.random((3,4,5)) x = x.astype(numpy.float32) res = sess.run([output_name], {input_name: x}) print(res) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [array([[[0.56617785, 0.551158 , 0.57431483, 0.62868774, 0.5294609 ], [0.6545371 , 0.64250827, 0.6819708 , 0.5105157 , 0.5584753 ], [0.66830933, 0.7094791 , 0.70664704, 0.6744693 , 0.7030401 ], [0.5395019 , 0.7210481 , 0.5845876 , 0.59664494, 0.6563896 ]], [[0.71235013, 0.6528918 , 0.5907483 , 0.66855776, 0.61100346], [0.51468205, 0.60125333, 0.5410304 , 0.57149607, 0.56778824], [0.5155948 , 0.54921585, 0.5138594 , 0.7051111 , 0.62632954], [0.5651827 , 0.55247986, 0.6941072 , 0.50415695, 0.7062323 ]], [[0.51758766, 0.67160237, 0.59442437, 0.5007695 , 0.56175166], [0.72844744, 0.5150477 , 0.5052765 , 0.5447472 , 0.7088654 ], [0.596162 , 0.5197903 , 0.6099661 , 0.724396 , 0.5885481 ], [0.6910895 , 0.53817046, 0.596786 , 0.6119356 , 0.5707261 ]]], dtype=float32)] .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.012 seconds) .. _sphx_glr_download_auto_examples_plot_load_and_predict.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_load_and_predict.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_load_and_predict.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_